Abstract

We propose inference procedures for general factorial designs with time-to-event endpoints. Similar to additive Aalen models, null hypotheses are formulated in terms of cumulative hazards. Deviations are measured in terms of quadratic forms in Nelson-Aalen-type integrals. Different from existing approaches, this allows to work without restrictive model assumptions as proportional hazards. In particular, crossing survival or hazard curves can be detected without a significant loss of power. For a distribution-free application of the method, a permutation strategy is suggested. The resulting procedures' asymptotic validity is proven and small sample performances are analyzed in extensive simulations. The analysis of a data set on asthma illustrates theapplicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.