Abstract

Cartilage proteoglycan aggregates contain two components (proteoglycan monomer and link protein) which interact with each other and with hyaluronic acid. Data from amino acid sequence analysis are presented that shows that a domain of the proteoglycan, the hyaluronic acid binding region, which interacts with link protein and hyaluronic acid is very similar to link protein in terms of its primary structure. However, the pattern of glycosylation in the hyaluronic acid binding region is different from that found in link protein. After removal of N-linked oligosaccharides, the tryptically prepared hyaluronic acid binding region from rat chondrosarcoma has a mass by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of 43 +/- 2 kDa. The COOH-terminal two-thirds of rat chondrosarcoma link protein, starting at residue 105, has 41.3% identity with a similar region in the hyaluronic acid binding region. We show that, in addition to the hyaluronic acid binding region, proteoglycan contains another region with similarity to the two repeating loop structures in the COOH-terminal two-thirds of link protein. This presumably corresponds to the second globular domain reported in rotary shadowing studies of cartilage proteoglycans. We have deduced the positions of all of the disulfide bonds in the hyaluronic acid binding region and find them to be in the same positions as would be expected from comparison of these sequences with link protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.