Abstract

In vitro reassembled aggregates of cartilage proteoglycan (aggrecan) were studied by glycerol spraying/rotary shadowing electron microscopy and compared to the corresponding native (i.e. never dissociated) structures. In both cases a tightly packed central filament structure was observed consisting of the hyaluronate binding region (HABR) of the proteoglycan, link protein (LP) and hyaluronate (HA). This differs from earlier results where a discontinuous central filament structure was seen after spreading proteoglycan aggregates at a water/air interphase. Binding of isolated HABR to HA is random but upon addition of link protein a clustering of the HA-binding proteins is observed, indicating a cooperativity. In a fully saturated aggregate the HA is covered by a continuous protein shell consisting of HABR and LP. When added in amounts below saturation HABR and LP bind to the HA in clusters which are interrupted by free strands of HA. The proteoglycan aggregate is thus an example for a structure where a polysaccharide forms a template for a supramolecular assembly largely stabilized by protein-protein interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call