Abstract
The widespread presence of per- and polyfluoroalkyl substances (PFAS) in various environmental matrices and their adverse health effects have gained worldwide attention. Therefore, numerous studies have focused on human exposure to PFAS through different pathways, such as fish and drinking water, and little attention has been paid to milk consumption. This study aimed to explore the transfer of PFAS by investigating the occurrence of PFAS in cow feed, drinking water, and raw milk from 20 regions of China and to assess the risk of human exposure to PFAS from raw milk. In total, 13, 15, and 7 PFAS were detected in cow feed, drinking water, and raw milk with total concentrations (∑PFAS) of 5.59 ± 2.91 ng/g (mean ± standard deviation), 11.91 ± 23.12 ng/L, and 0.15 ± 0.13 ng/mL, respectively. Perfluoropentanoic acid (PFPeA) was dominant with a concentration of 2.28 ± 1.75 ng/g, approximately 40.7 % of ∑PFAS in feed. Perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) were the dominant compounds found in drinking water at 4.80 ± 14.37 and 3.01 ± 6.06 ng/L, respectively. Additionally, PFOA (0.08 ± 0.09 ng/mL) was the most significant compound in raw milk, contributing 51.5 % of ∑PFAS. Moreover, the results of the carry-over rate (COR) were as follows: perfluorooctanesulfonic acid (PFOS, 29.58 %) > PFOA (15.78 %) > perfluorobutanesulfonic acid (PFBS, 9.45 %). According to the reference dose (RfD) established by the European Food Safety Authority (EFSA) in 2018, there is a potential toxicological hazard of PFOA exposure for preschool children through milk consumption. Notably, the health risk from PFOS for 1-year-old children in Central China exceeded that observed for humans in other regions and age groups. Our results showed that PFOS and PFOA were more likely to accumulate in cows and to be constantly transferred to milk, thus increasing the human health risk, especially in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.