Abstract
Carrollian holography aims to express gravity in four-dimensional asymptotically flat spacetime in terms of a dual three-dimensional Carrollian CFT living at null infinity. Carrollian amplitudes are massless scattering amplitudes written in terms of asymptotic or null data at I\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{I} $$\\end{document}. These position space amplitudes at I\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{I} $$\\end{document} are to be re-interpreted as correlation functions in the putative dual Carrollian CFT. We derive basic results concerning tree-level Carrollian amplitudes yielding dynamical constraints on the holographic dual. We obtain surprisingly compact expressions for n-point MHV gluon and graviton amplitudes in position space at I\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{I} $$\\end{document}. We discuss the UV/IR behaviours of Carrollian amplitudes and investigate their collinear limit, which allows us to define a notion of Carrollian OPE. By smearing the OPE along the generators of null infinity, we obtain the action of the celestial symmetries — namely, the S algebra for Yang-Mills theory and Lw1+∞ for gravity — on the Carrollian operators. As a consistency check, we systematically relate our results with celestial amplitudes using the link between the two approaches. Finally, we initiate a direct connection between twistor space and Carrollian amplitudes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have