Abstract

Carrier velocity is one of the most significant characteristics for analytical modeling of field effect transistor based devices. The aim of the present paper is to evaluate the scaling behaviours of carrier velocity in trilayer graphene nanoribbon as a function of electron density, normalized Fermi energy and electric field in the degenerate and non-degenerate regimes. To this end, we derive an analytical model of carrier velocity with numerical solution for trilayer graphene nanoribbon field effect transistor in which the temperature and carrier concentration characteristics dependence is highlighted. Moreover, to determine the trilayer graphene nanoribbon field effect transistor performance the carrier velocity model is adopted to derive the current-voltage characteristics of the device. The simulated results proffer remarkable insights into the importance of carrier velocity impact in high performance trilayer graphene nanoribbon field effect transistor. We demonstrate that although there is no experimental evidence reported in the literature for carrier velocity of trilayer graphene nanoribbon, the proposed model can assist in comprehending experiments involving nanoscale field effect transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.