Abstract

We report the measurement of majority carrier concentration, depletion width, mobility, and resistivity in a thin-film based Cu2ZnSnSe4 (CZTSe) photovoltaic device. The carrier transport properties were measured using coordinated admittance spectroscopy and capacitance-voltage technique. The bias dependence of the modified dielectric relaxation in the absorber of the CZTSe solar cell was investigated to extract the mobility and resistivity. Hall measurement was also performed at room temperature for the verification of carrier concentration, resistivity, and mobility. The temperature dependent resistivity and mobility exhibit thermally activated behaviors characterized by a thermal activation energy ≈ 60 meV. The positive temperature dependence of the mobility indicates a carrier-transport impeding effect caused by the band-edge fluctuation in poly-crystalline CZTSe, whose magnitude is measurable by the aforementioned activation energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.