Abstract
Toluidine blue (TB)/n-silicon heterojunction solar cell was fabricated by depositing TB film on n-silicon wafer using thermal deposition technique. X-ray diffraction patterns of the TB film show presence of crystals with size 30 nm dispersed in amorphous matrix. The current–voltage–temperature performance of Au/TB/n-Si/Al device was studied in dark and under illumination conditions. The device showed diode behavior. The diode parameters such as ideality factor, barrier height, series and shunt resistance were determined using a conventional I–V–T characteristics. The analysis of the diode characteristics in forward bias direction confirmed that the transport mechanisms of the Au/TB/n-Si/Al solar cell at applied potential 0.1 V is Ohmic conduction. The operating conduction mechanisms in reverse bias direction are Pool–Frenkel effect followed by Schootky field lowering mechanism. The small value of activation energy in reverse bias direction indicates that the conduction process is expected to be by tunneling of electrons between nearest-neighbor sites and it is temperature independent. The photo conduction characteristics of the diode suggests its application as a solar cell.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have