Abstract

In this article, graphene/ZnO Schottky contacts with different ion doping were fabricated by the sol–gel method. The results showed that the nanoparticles growth on the surface of ZnO film was limited by ion doping, and the number and size of nanoparticles decreased for B ion doping. Further, the ZnO film band gap presented a decreasing trend with B, Al and B-Al ion doping. The electrical properties of the graphene/ZnO Schottky contact incorporating an ion-doped ZnO film were investigated, where the results suggested that ion doping could effectively improve the barrier height and reduce the leakage current. This phenomenon can be explained by the reduction of the oxygen vacancies on the surface of the ZnO film by ion doping, which leads to a reduction of the defect level at the interface and weakened Fermi level pinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.