Abstract

Multiple quantum wells (MQW) lattice matched to GaAs consisting of In0.14Ga0.76As wells balanced with GaAs0.24P0.76 barriers have been used to extend the absorption of GaAs subcells to longer wavelengths for use in an InGaP/GaAs/Ge triple-junction photovoltaic cell. Thin barriers with high-phosphorus composition are capable of balancing the strain from the InGaAs wells; thus, creating conditions to allow for thicker wells and for carrier tunneling to dominate transport across the structure. As a result, a larger percentage of the depletion region is occupied by InGaAs quantum wells that absorb wavelengths beyond 875 nm and the indium composition is not limited by thermionic emission requirements. Measurements at elevated temperatures and reverse bias suggest that a thermally assisted tunneling mechanism is responsible for transport through the barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.