Abstract

We established a model for investigating polycrystalline silicon (poly-Si) thin film transistors (TFTs). The effect of grain boundaries (GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region, and the dominant transport mechanism of carrier across grain boundaries was subsequently determined. It is shown that the thermionic emission (TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary. To a poly-Si TFT model with a 1 nm-width grain boundary, in the linear region, thermionic emission is similar to that of tunneling (TU), however, with increasing grain boundary width and number, tunneling becomes dominant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call