Abstract
We investigate the effect of hole and electron doping to half-filling in the periodic Anderson model on a triangular lattice by the Hartree-Fock approximation at zero temperature. At half-filling, the system exhibits a partially disordered insulating state, in which a collinear antiferromagnetic order on an unfrustrated honeycomb subnetwork coexists with nonmagnetic state at the remaining sites. We find that the carrier doping destabilizes the partially disordered state, resulting in a phase separation to a doped metallic state with different magnetic order. The partially disordered state is restricted to the half-filled insulating case, while its metallic counterpart is obtained as a metastable state in a narrow electron doped region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have