Abstract

We investigate the transport properties of graphene underneath metal to reveal whether the carrier density in graphene underneath source/drain electrodes in graphene field-effect transistors is fixed. The resistance of the graphene/Ni double-layered structure has shown a graphene-like back-gate bias dependence. In other words, the electrical properties of graphene are not significantly affected by its contact with Ni. This unexpected result may be ascribed to resist residuals at the metal/graphene interface, which may reduce the interaction between graphene and metals. In a back-gate device fabricated using the conventional lithography technique with an organic resist, the carrier density modulation in the graphene underneath the metal electrodes should be considered when discussing the metal/graphene contact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call