Abstract
To identify the molecular pathways that guide cardiac ventricular chamber specification, maturation and morphogenesis, we have sought to characterize factors that regulate the expression of the ventricular myosin light chain-2 gene, one of the earliest markers of ventricular regionalization during mammalian cardiogenesis. Previously, our laboratory identified a 28 bp HF-la/MEF-2 element in the MLC-2v promoter region, which confers cardiac ventricular chamber-specific gene expression during murine cardiogenesis, and showed that the ubiquitous transcription factor YB-1 binds to the HF-la site in conjunction with a co-factor. In a search for interacting co-factors, a nuclear ankyrin-like repeat protein CARP (cardiac ankyrin repeat protein) was isolated from a rat neonatal heart cDNA library by yeast two-hybrid screening, using YB-1 as the bait. Co-immunoprecipitation and GST-CARP pulldown studies reveal that CARP forms a physical complex with YB-1 in cardiac myocytes and immunostaining shows that endogenous CARP is localized in the cardiac myocyte nucleus. Co-transfection assays indicate that CARP can negatively regulate an HF-1-TK minimal promoter in an HF-1 sequence-dependent manner in cardiac myocytes, and CARP displays a transcriptional inhibitory activity when fused to a GAL4 DNA-binding domain in both cardiac and noncardiac cell context. Northern analysis revealed that carp mRNA is highly enriched in the adult heart, with only trace levels in skeletal muscle. During murine embryogenesis, endogenous carp expression was first clearly detected as early as E8.5 specifically in heart and is regulated temporally and spatially in the myocardium. Nkx2-5, the murine homologue of Drosophila gene tinman was previously shown to be required for heart tube looping morphogenesis and ventricular chamber-specific myosin light chain-2 expression during mammalian heart development. In Nkx2-5(-/-)embryos, carp expression was found to be significantly and selectively reduced as assessed by both whole-mount in situ hybridizations and RNase protection assays, suggesting that carp is downstream of the homeobox gene Nkx2-5 in the cardiac regulatory network. Co-transfection assays using a dominant negative mutant Nkx2-5 construct with CARP promoter-luciferase reporter constructs in cardiac myocytes confirms that Nkx2-5 either directly or indirectly regulates carp at the transcriptional level. Finally, a carp promoter-lacZ transgene, which displays cardiac-specific expression in wild-type and Nkx2-5(+/-) background, was also significantly reduced in Nkx2-5(-/-) embryos, indicating that Nkx2-5 either directly or indirectly regulates carp promoter activity during in vivo cardiogenesis as well as in cultured cardiac myocytes. Thus, CARP is a YB-1 associated factor and represents the first identified cardiac-restricted downstream regulatory gene in the homeobox gene Nkx2-5 pathway and may serve as a negative regulator of HF-1-dependent pathways for ventricular muscle gene expression.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have