Abstract

As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene ~15°, and perhaps up to 25° counterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call