Abstract
Intrauterine growth restriction (IUGR) following prenatal hypoxia exposure leads to a higher risk of developing cardiovascular disease (CVD) in later life. Our aim was to evaluate cardiac susceptibility and its pathophysiological mechanisms following acute myocardial infarction (MI) in adult rat offspring exposed to prenatal hypoxia. Male and female rat offspring, which experienced normoxia (21% O2) or hypoxia (11% O2) in utero underwent sham or MI surgery at 12 weeks of age. Echocardiographic data revealed that both sexes had systolic dysfunction following MI surgery, independent of prenatal hypoxia. Male offspring exposed to prenatal hypoxia, however, had left ventricular dilatation, global dysfunction, and signs of diastolic dysfunction following MI surgery as evident by increased left ventricular internal diameter (LVID) during diastole (MI effect, P<0.01), Tei index (MI effect, P<0.001), and E/E' ratio (prenatal hypoxia or MI effect, P<0.01). In contrast, diastolic dysfunction in female offspring was not as evident. Cardiac superoxide levels increased only in prenatal hypoxia exposed male offspring. Cardiac sarcoendoplasmic reticulum Ca2+-ATPase2a (SERCA2a) levels, a marker of cardiac injury and dysfunction, decreased in both male and female MI groups independent of prenatal hypoxia. Prenatal hypoxia increased cardiac ryanodine receptor 2 (RYR2) protein levels, while MI reduced RYR2 in only male offspring. In conclusion, male offspring exposed to prenatal hypoxia had an increased susceptibility to ischemic myocardial injury involving cardiac phenotypes similar to heart failure involving diastolic dysfunction in adult life compared with both offspring from healthy pregnancies and their female counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.