Abstract
IntroductionClinical application of arteriovenous (AV) extracorporeal membrane oxygenation (ECMO) requires assessment of cardiovascular ability to respond adequately to the presence of an AV shunt in the face of acute lung injury (ALI). This ability may be age dependent and vary with the experimental model. We studied cardiovascular stability in a lamb model of severe ALI, comparing conventional mechanical ventilation (CMV) with AV-ECMO therapy.MethodsSeventeen lambs were anesthetized, tracheotomized, paralyzed, and ventilated to maintain normocapnia. Femoral and jugular veins, and femoral and carotid arteries were instrumented for the AV-ECMO circuit, systemic and pulmonary artery blood pressure monitoring, gas exchange, and cardiac output determination (thermodilution technique). A severe ALI (arterial oxygen tension/inspired fractional oxygen <200) was induced by lung lavage (repeated three times, each with 5 ml/kg saline) followed by tracheal instillation of 2.5 ml/kg of 0.1 N HCl. Lambs were consecutively assigned to CMV treatment (n = 8) or CMV plus AV-ECMO therapy using up to 15% of the cardiac output for the AV shunt flow during a 6-hour study period (n = 9). The outcome measures were the degree of inotropic and ventilator support needed to maintain hemodynamic stability and normocapnia, respectively.ResultsFive of the nine lambs subjected to AV-ECMO therapy (56%) died before completion of the 6-hour study period, as compared with two out of eight lambs (25%) in the CMV group (P > 0.05; Fisher's exact test). Surviving and nonsurviving lambs in the AV-ECMO group, unlike the CMV group, required continuous volume expansion and inotropic support (P < 0.001; Fisher's exact test). Lambs in the AV-ECMO group were able to maintain normocapnia with a maximum of 30% reduction in the minute ventilation, as compared with the CMV group (P < 0.05).ConclusionAV-ECMO therapy in lambs subjected to severe ALI requires continuous hemodynamic support to maintain cardiovascular stability and normocapnia, as compared with lambs receiving CMV support.
Highlights
Clinical application of arteriovenous (AV) extracorporeal membrane oxygenation (ECMO) requires assessment of cardiovascular ability to respond adequately to the presence of an AV shunt in the face of acute lung injury (ALI)
The aim of the present study was to determine the cardiovascular support needed to maintain hemodynamic stability and the minute ventilation needed to maintain normocapnia in lambs subjected to severe ALI and treated with AV-ECMO (AV shunt flow of up to 15%) or conventional mechanical ventilation (CMV; AV shunt flow of 0%)
No significant differences were found between the preinjury values of lambs that were later randomized to CMV and AV-ECMO groups
Summary
Clinical application of arteriovenous (AV) extracorporeal membrane oxygenation (ECMO) requires assessment of cardiovascular ability to respond adequately to the presence of an AV shunt in the face of acute lung injury (ALI) This ability may be age dependent and vary with the experimental model. A search for safer modes of bypass therapy, including arteriovenous (AV)-ECMO, is warranted because of the cardiovascular and cerebral autoregulatory complications that are common during ECMO operations [12,13] This new mode of ECMO therapy may have some advantages over conventional venoarterial ECMO or venovenous ECMO techniques because the AV-ECMO technique appears simpler and may involve fewer operational complications [14]. They suggested that a carbon dioxide membrane lung could ideally be operated in an AV mode without using a pump
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.