Abstract

Antiparasitic ivermectin has been reported to induce cardiovascular adverse events, including orthostatic hypotension, tachycardia and cardiopulmonary arrest, of which the underlying pathophysiology remains unknown. Since its drug repurposing as an antiviral agent is underway at higher doses than those for antiparasitic, we evaluated the cardiovascular safety pharmacology of ivermectin using isoflurane-anesthetized beagle dogs (n=4). Ivermectin in doses of 0.1 followed by 1 mg/kg was intravenously infused over 10 min with an interval of 20 min, attaining peak plasma concentrations of 0.94 ± 0.04 and 8.82 ± 1.25 μg/mL, which were 29-31 and 276-288 times higher than those observed after its antiparasitic oral dose of 12 mg/body, respectively. The latter peak concentration was > 2 times greater than those inhibiting proliferation of dengue virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hepatitis B virus in vitro. Ivermectin decreased heart rate without altering mean blood pressure, suggesting that ivermectin does not cause hypotension or tachycardia directly. Ivermectin hardly altered atrioventricular nodal or intraventricular conduction, indicating a lack of inhibitory action on Ca2+ or Na+ channel in vivo. Ivermectin prolonged QT interval/QTcV in a dose-related manner and tended to slow the repolarization speed in a reverse frequency-dependent manner, supporting previously described its IKr inhibition, which would explain Tpeak-Tend prolongation and heart-rate reduction in this study. Meanwhile, ivermectin did not significantly prolong J-Tpeakc or terminal repolarization period, indicating torsadogenic potential of ivermectin leading to the onset of cardiopulmonary arrest would be small. Thus, ivermectin has a broad range of cardiovascular safety profiles, which will help facilitate its drug repurposing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.