Abstract

Microgravity is known to induce orthostatic intolerance and baroreflex impairment in astronauts. Cardiovascular responses observed in 30° head-down tilt rat models, whether 24 hr whole body suspension (WBS) or 7 day tail-suspension (TS), mimic observations made during exposure to microgravity. We evaluated the cardiovascular effects of simulated microgravity and the subsequent post-suspension in rats using the above models. Mean arterial pressure (MAP) of both WBS and TS rats did not change during suspension. In both models, MAP decreased post-suspension and this response lasted for 6 hrs. Salt-loaded animals did not show a post-suspension reduction in MAP. Plasma ionized calcium was decreased at 2 hr of WBS, with no change in sodium, potassium, magnesium, glucose, or hematocrit. Body weight changes were similar for all animals whether under suspension or control conditions. Both rat models demonstrate post-suspension hypotension and these results support the notion that salt-loading may have some beneficial effects in ameliorating this hypotension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call