Abstract
The aim of this study is to characterize cardiovascular and respiratory signals during orthostatic and mental stress as reflected in indices of entropy and complexity, providing a comparison between the performance of different estimators. To this end, the heart rate variability, systolic blood pressure, diastolic blood pressure and respiration time series were extracted from the recordings of 61 healthy volunteers undergoing a protocol consisting of supine rest, head-up tilt test and mental arithmetic task. The analysis was performed in the information domain using measures of entropy and conditional entropy, estimated through model-based (linear) and model-free (binning, nearest neighbor) approaches. Our results show that different types of stress elicited different responses in the employed indices. On one hand, entropy mainly reflected known changes in the variance of physiological time series. On the other hand, the information conveyed by conditional entropy allowed to characterize the complexity of the four time series during the two stress tasks: we found that cardiac and vascular dynamics underwent a reduction in complexity as a consequence of postural stress, while vascular and respiratory complexity increased as a result of mental stress. As for the performance of different estimators, we did not find substantial differences between model-based and model-free approaches, possibly indicating that significant non-linear dynamics did not appear in the studied conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.