Abstract

Cardiopulmonary exercise testing (CPET) allows for a non-invasive assessment of the integrative response of the pulmonary, cardiovascular, and skeletal muscle system during exercise. Therefore CPET in sports medicine covers a wide spectrum, ranging from diagnosis of disease, preoperative assessment, to athlete monitoring. High standards of reliability and validity are needed to ensure high-quality and diagnostically conclusive CPET data, necessitating a systematic process of quality assurance and control in the daily application of CPET. Therefore, methodological aspects such as CPET equipment principles, calibration, verification, maintenance, preparation, and plausibility checks need to be considered. As inter-technology, inter-device, and inter-unit differences in reliability and validity are reported for automated metabolic analyzers, the choice of the appropriate device should follow the purpose of use and comprehensible data on reliability and validity. To ensure high-quality measurements, careful calibration, and verification of all sensors, the integrated overall measurement performance, and maintenance of all equipment need to be performed and monitored longitudinally. Further, standardized ambient conditions, with adequate circulation and exchange of room air are essential. As the choice of the ergometer and protocol influences various target values in CPET, appropriateness for the selected diagnostic objective as well as a corresponding standardization is needed. While patients should receive pretest information that clearly outlines the test procedure, the correct attachment of the CPET equipment is of utmost importance. To detect and correct malfunctions of the metabolic analyzer and equipment, plausibility checks of the outcome measures validity should be performed during the resting, unloaded, loaded, and recovery test phase. A basic plausibility check should include adequate rest values and increases for a given workload rate of minute ventilation ( ˙VE), oxygen consumption ( ˙VO2) and respiratory exchange ratio (RER), using rules of thumb by Rühle. Before the final data interpretation is performed, e.g. ventilatory threshold or maximum oxygen consumption (˙VO2max) or ˙VO2peak determination, again a plausibility check should be performed and the patient‘s effort whether or not maximal should be determined. Consequently, a standard operating procedure for quality assurance and control, including an intuitive data visualization with thresholds for “pass”, “fail” or outliers and trends of concerns should be specifically defined, taught, and implemented in each facility. Key Words: CPET, Exercise Testing, Physical Fitness

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call