Abstract

Exploiting embryonic stem cell (ESC)-derived cardiomyocytes as a vital source for cell therapies and tissue engineering will depend on robust, large-scale production processes. Recently, we have reported stirring-controlled formation of embryoid bodies, enabling the generation of pure cardiomyocytes in 2-L scale. Expansion and differentiation of genetically engineered mouse ESCs was followed by antibiotic-based cardiomyocyte enrichment. Here we have investigated modification of various parameters aiming at process optimization in a 250-mL spinner flask system. Duration of the differentiation phase, timing of retinoic acid addition, and a slower medium exchange rate were found to be crucial to enhancing cardiomyocyte yield. Improved process conditions were consequently transferred to a 2-L controlled bioreactor. Employing a manual fill-and-draw medium change resulted in the formation of 0.86 x 10(9) cardiomyocytes in a single 2-L batch, thereby reproducing our previous findings. In contrast, an automated perfusion-based strategy enabled the production of 4.6 x 10(9) cardiomyocytes in a single run. This is significantly higher than previously reported and highlights the enormous process optimization potential in the scalable generation of ESC-derived cell lineages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.