Abstract

Low positive end-expiratory pressure (PEEP) can result in alveolar derecruitment, and high PEEP or high tidal volume (VT) in lung overdistension. We investigated cardiogenic oscillations (COS) in the airway pressure signal to investigate whether these oscillations can assess unfavourable intratidal events. COS induce short instantaneous compliance increases within the pressure-volume curve, and consequently in the compliance-volume curve. We hypothesised that increases in COS-induced compliance reflect non-linear intratidal respiratory system mechanics. In mechanically ventilated anaesthetised pigs with healthy (n=13) or atelectatic (n=12) lungs, pressure-volume relationships and the ECG were acquired at a PEEP of 0, 5, 10, and 15cm H2O. During inspiration, the peak compliance of successive COS (CCOS) was compared with intratidal respiratory system compliance (CRS) within incremental volume steps up to the full VT of 12mlkg-1. We analysed whether CCOS variation corresponded with systolic arterial pressure variation. CCOS-volume curves showed characteristic intratidal patterns depending on the PEEP level and on atelectasis. Increasing CRS- or CCOS-volume patterns were associated with intratidal derecruitment with low PEEP, and decreasing patterns above 6mlkg-1 and high PEEP showed overdistension. CCOS was not associated with systolic arterial pressure variations. Heartbeat-induced oscillations within the course of the inspiratory pressure-volume curve reflect non-linear intratidal respiratory system mechanics. The analysis of these cardiogenic oscillations can be used to detect intratidal derecruitment and overdistension and, hence, to guide PEEP and VT settings that are optimal for respiratory system mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.