Abstract
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors. Quantitative proteomics of striated muscle revealed that stress-resistant females were most dissimilar from all other groups, with over 250 proteins differentially regulated with stress hypersensitivity. Males showed less proteomic variation with stress hypersensitivity; however, these changes were associated with pathway enrichment. In the heart, stress-sensitive males had significant enrichment of pathways related to mitochondrial ATP synthesis, suggesting that increased cardio-metabolic capacity is associated with stress hypersensitivity in male mdx mice. In both sexes, stress hypersensitivity was associated with greater expression of beta-actin-like protein 2, indicative of altered cytoskeletal organisation. Despite identifying proteomic signatures associated with stress hypersensitivity, these did not correlate with differences in the serum metabolome acutely after a stressor. These data suggest that the heterogeneity in stress hypersensitivity in mdx mice is partially driven by cytoskeletal organisation, but that sex-specific cardio-metabolic reprogramming may also underpin this phenotype. SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease which is associated with a premature loss of ambulation and neurocognitive dysfunction. The hypersensitive stress response in DMD is a heterogeneous phenotype which is poorly understood. This study provided the first investigation of the peripheral mechanisms regulating the hypersensitive stress response by undertaking multi-omics analysis of phenotypically stratified mdx mice. Variations in behaviour and the striated muscle proteomic profiles suggest that cardio-metabolic remodelling and cytoskeletal organisation may contribute to this phenotype. This research offers significant insights into understanding how peripheral dystrophin deficiency relates to the cognitive abnormalities seen in patients with DMD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have