Abstract

Abstract Cardinality estimators like HyperLogLog are sketching algorithms that estimate the number of distinct elements in a large multiset. Their use in privacy-sensitive contexts raises the question of whether they leak private information. In particular, can they provide any privacy guarantees while preserving their strong aggregation properties? We formulate an abstract notion of cardinality estimators, that captures this aggregation requirement: one can merge sketches without losing precision. We propose an attacker model and a corresponding privacy definition, strictly weaker than differential privacy: we assume that the attacker has no prior knowledge of the data. We then show that if a cardinality estimator satisfies this definition, then it cannot have a reasonable level of accuracy. We prove similar results for weaker versions of our definition, a nd a nalyze t he p rivacy o f existing algorithms, showing that their average privacy loss is significant, e ven f or m ultisets w ith l arge cardinalities. We conclude that strong aggregation requirements are incompatible with any reasonable definition o f privacy, and that cardinality estimators should be considered as sensitive as raw data. We also propose risk mitigation strategies for their real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.