Abstract

Differential privacy is a widely accepted formal privacy definition that allows aggregate information about a dataset to be released while controlling privacy leakage for individuals whose records appear in the data. Due to the unavoidable tension between privacy and utility, there have been many works trying to relax the requirements of differential privacy to achieve greater utility.One class of relaxation, which is gaining support outside the privacy community is embodied by the definitions of individual differential privacy (IDP) and bootstrap differential privacy (BDP). Classical differential privacy defines a set of neighboring database pairs and achieves its privacy guarantees by requiring that each pair of neighbors should be nearly indistinguishable to an attacker. The privacy definitions we study, however, aggressively reduce the set of neighboring pairs that are protected.To a non-expert, IDP and BDP can seem very appealing as they echo the same types of privacy explanations that are associated with differential privacy, and also experimentally achieve dramatically better utility. However, we show that they allow a significant portion of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss under their privacy accounting rules.With the non-expert in mind, we demonstrate these attacks using the preferred mechanisms of these privacy definitions. In particular, we design a set of queries that, when protected by these mechanisms with high noise settings (i.e., with claims of very low privacy loss), yield more precise information about the dataset than if they were not protected at all. The specific attacks here can be defeated and we give examples of countermeasures. However, the defenses are either equivalent to using differential privacy or to ad-hoc methods tailored specifically to the attack (with no guarantee that they protect against other attacks). Thus, the defenses emphasize the deficiencies of these privacy definitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.