Abstract

Cardiac output (CO) is a key hemodynamic variable that can be minimally invasively estimated by pulse wave analysis. Multi-beat analysis is a novel pulse wave analysis method. In this prospective observational clinical method comparison study, we compared CO estimations by multi-beat analysis with CO measured by intermittent pulmonary artery thermodilution (PATD) in adult patients treated in the intensive care unit (ICU) after off-pump coronary artery bypass surgery (OPCAB). We included patients after planned admission to the ICU after elective OPCAB who were monitored with a radial arterial catheter and a pulmonary artery catheter. At seven time points, we determined CO using intermittent PATD (PATD-CO; reference method) and simultaneously recorded the radial arterial blood pressure waveform that we later used to estimate CO using multi-beat analysis (MBA-CO; test method) with the Argos monitor (Retia Medical; Valhalla, NY, USA). Blood pressure waveforms impaired by inappropriate damping properties or artifacts were excluded. We compared PATD-CO and MBA-CO using Bland–Altman analysis accounting for repeated measurements, the percentage error, and the concordance rate derived from four-quadrant plot analysis (15% exclusion zone). We analyzed 167 CO values of 31 patients. Mean PATD-CO was 5.30 ± 1.22 L/min and mean MBA-CO was 5.55 ± 1.82 L/min. The mean of the differences between PATD-CO and MBA-CO was 0.08 ± 1.10 L/min (95% limits of agreement: − 2.13 L/min to + 2.29 L/min). The percentage error was 40.7%. The four-quadrant plot-derived concordance rate was 88%. CO estimation by multi-beat analysis of the radial arterial blood pressure waveform (Argos monitor) shows reasonable agreement compared with CO measured by intermittent PATD in adult patients treated in the ICU after OPCAB.

Highlights

  • 2 MethodsCardiac output (CO)—as a main determinant of oxygen delivery—is a key hemodynamic variable to guide therapy in critically ill patients with circulatory shock [1]

  • Based on experimental [13] and retrospective [12, 14, 15] pilot studies Retia Medical (Valhalla, NY, USA) developed a commercially available bedside CO monitor using multi-beat analysis—the Argos monitor—that was recently cleared by the US Food and Drug Administration (FDA). In this clinical method comparison study, we compared CO estimations by multi-beat analysis of the radial arterial blood pressure waveform (Argos monitor) to CO measured by intermittent pulmonary artery thermodilution (PATD) in adult patients treated in the intensive care unit (ICU) after off-pump coronary artery bypass surgery (OPCAB)

  • Adult patients who were scheduled for elective OPCAB with planned postoperative ICU admission and in whom hemodynamic monitoring with a radial artery catheter and a pulmonary artery catheter (PAC) was planned for clinical reasons not related to the study were eligible for inclusion in the study

Read more

Summary

Introduction

2 MethodsCardiac output (CO)—as a main determinant of oxygen delivery—is a key hemodynamic variable to guide therapy in critically ill patients with circulatory shock [1]. Invasive uncalibrated pulse wave analysis requiring only an arterial catheter is increasingly used as a minimally invasive method for stroke volume—and CO—estimation in surgical and critically ill patients [5,6,7]. The term pulse wave analysis comprises several markedly different approaches and algorithms to estimate stroke volume by analyzing the arterial blood pressure waveform [8, 9]. Pulse wave analysis enables CO to be estimated continuously. It is recommended for real-time CO estimation during functional tests of fluid responsiveness such as the passive leg raising [10] or fluid challenge test [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.