Abstract
Muscle-specific gene expression in the heart during Xenopus development was investigated using reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to detect transcripts of the gene for the cardiac myosin heavy chain (CMHC). RT-PCR analysis determined that CMHC transripts are present in the cardiac mesoderm at stage 13, demonstrating that muscle-specific gene expression in the primitive myocardium has begun by the early neurula stage, approximately 30 h before the heart beat begins. Xenopus, therefore, is similar to amniotes and mammals in that cardiac precursor cells begin to express muscle-specific gene transcripts soon after commitment to the cardiac myocyte lineage. The earliest CMHC gene transcripts can be detected in the heart using whole-mount in situ hybridization is early tailbud stage 28, which coincides with the onset of heart tube morphogenesis. CMHC gene expression was also detected in skeletal muscle: RT-PCR analysis determined that CMHC transcripts are transiently expressed in the somite during the initial phases of skeletal muscle differentiation. Furthermore, CMHC mRNAs are expressed in a subset of head muscles of the feeding tadpole. CMHC gene expression is induced in ectodermal cells of the animal cap in blastula-stage embryos injected with synthetic MyoD or Myf5 RNA, suggesting that the CMHC gene contains regulatory elements that are responsive to the activity of those skeletal-muscle-specific transcription factors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have