Abstract

Increasing epidemiological evidences have revealed the association between ambient fine particulate matter (PM2.5) pollution and cardiovascular disease's morbidity and mortality. However, how seasonal PM2.5 exposure influence cardiac function and the underlying mechanism converged in energy metabolic remodeling remain to be elucidated. This study focused on seasonal PM2.5-induced cardiac dysfunction and metabolic remodeling, and the toxicity differences of PM2.5 samples from different sampling seasons and different exposure dosages were discussed. The results showed that seasonal haze caused cardiac dysfunctions, including decreases in heart rate (HR) and heart rate variability (HRV), abnormal changes in hemodynamic and echocardiographic parameters. Concurrently, the energy production in myocardial tissues was evidently disturbed. In particular, low dose of PM2.5 exposure notably induced the elevation of beta oxidation (β-oxidation) and tricarboxylic acid cycle (TCA cycle) as the compensation for the disturbed energy metabolism in animals, whereas high dose of PM2.5 exposure attenuated this process and the glycolysis levels were strikingly promoted, thus causing the reduced energy production and cardiac dysfunction. Comparatively, winter PM2.5 exposure caused more severe cardiac toxicity than did summer haze samples, possibly due to the existence of different components and pollutant levels in seasonal hazes. The findings on seasonal PM2.5 induced cardiac dysfunction and myocardial metabolic remodeling provided new insights into cardiovascular disease risks from haze exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.