Abstract

This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals.

Highlights

  • Hypertension is a chronical medical condition which represents a major risk factor for myocardial infarction, heart failure, stroke, peripheral arterial disease, and aortic aneurysm and is a cause of chronic kidney disease

  • In this study we focused our attention on Olea europaea L. leaf extract (OEE) and on Hibiscus sabdariffa L. calyces extract (HSE)

  • Since olive leaves and hibiscus flower extracts are rich in phenolic compounds, we have investigated the ability of the extracts to protect cultured HUVECs from oxidative stress

Read more

Summary

Introduction

Hypertension is a chronical medical condition which represents a major risk factor for myocardial infarction, heart failure, stroke, peripheral arterial disease, and aortic aneurysm and is a cause of chronic kidney disease. Oxidative stress (ROS and RNS), inflammation, increased expression of redox-sensitive proinflammatory genes, cell adhesion molecules, and recruitment migration vascular dysfunction (T cells and B cells) are the primary pathophysiologic and functional mechanisms that induce vascular disease [4] All these are closely interrelated and establish a deadly combination that leads to endothelial dysfunction (ED), vascular smooth muscle and cardiac dysfunction, hypertension, vascular disease, atherosclerosis, and cardiovascular diseases (CVD) [5]. Conventional pharmacological treatment for hypertension includes diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blocker, β-receptors blockers, L-Type calcium channel blockers, and central α-receptors agonists

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call