Abstract

The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.