Abstract

Carbon nanomaterials, include carbon nanotubes and graphene nanosheets, have drawn an increasing amount of attention because of their potential applications in daily life or in providing novel therapeutic possibilities for treating diseases. However, the overall biocompatibility, the potential toxic effects of carbon nanomaterials toward human cells, and their modulations in cellular mechanism, are not fully understood. Herein, four types of carbon nanomaterials, include long and short carbon nanotubes and graphene nanosheets, at low and high concentrations, were functionalized and dispersed in the biocompatible buffer for assessment. The surface structure, the morphology, and chemical composition of carbon nanomaterials were characterized. Also, biological assays investigating cellular viability, vitality, cell cycle, and apoptotic cell death were applied on cells co-incubated with nanomaterials, to evaluate the biocompatibility of these nanomaterials in human cells. Our data suggested that even though co-incubation of nanomaterials did not seem to affect the viability of cells notably, high concentrations (50 ug/ml) of SW could lead to unhealthy cells, and we observed dramatic G2 arrest effect mediated by p21 induction in high SW incubated cells. Other nanomaterials at high concentration may also alter cell cycle profile of the cells. In summary, our data demonstrated that these nanomaterials could regulate cell cycle and lead to apoptosis at high concentrations, and the underling molecular mechanisms have been addressed. Caution should be taken on their concentration when nanomaterials are in used in future medical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.