Abstract
Formononetin is a natural flavonoid existing widely in plants with many pharmacological effects. However, its application is limited by structure, poor water solubility and low bioavailability. In this study, Bacillus velezensis LQ5 was isolated from the inter-root soil of Glycyrrhiza uralensis Fisch for the first time and formononetin was firstly structurally modified by whole-cell catalysis of LQ5 to obtain formononetin-7-O-β-D-glucoside (FG), formononetin-7-O-β-(6''-O-succinyl)-D-glucoside (FGS) and formononetin-7-O-phosphate (FP). The selective preparation of the three products was achieved by adjusting the content of yeast extract, type and content of sugars, metal ions, pH and ATP content. The result confirmed that FP had the ideal drug-likeness properties and showed a greater ability to reduce intracellular reactive oxygen species levels and regulate oxidative enzymes. This work successfully established a biotransformation method for the efficient transformation of formononetin to produce high-value formononetin derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.