Abstract

BackgroundHuman carbonyl reductase 1 (CBR1) plays major roles in protecting cells against cellular damage resulting from oxidative stress. Although CBR1-mediated detoxification of oxidative materials increased by stressful conditions including hypoxia, neuronal degenerative disorders, and other circumstances generating reactive oxide is well documented, the role of CBR1 under ionising radiation (IR) is still unclear.MethodsThe formalin-fixed and paraffin-embedded tissues of 85 patients with head and neck squamous cell carcinoma (HNSCC) were used to determine if CBR1 expression effects on survival of patients with treatment of radiotherapy. Subsequently colony formation assays and xenograft tumor mouse model was used to verify the relationship between CBR1 expression and radiosensitivity in HNSCC cells. Publicly-available data from The Cancer Genome Atlas (TCGA) was analysed to determine if CBR1 expression affects the survival of patients with HNSCC. To verify CBR1-mediated molecular signalling pathways, cell survival, DNA damage/repair, reactive oxygen species (ROS), cell cycle distribution and mitotic catastrophe in HNSCC cells with modulated CBR1 expression by knockdown or overexpression were measured using by colony formation assays, flow cytometry, qRT-PCR and western blot analysis.ResultsHNSCC patients with low CBR1 had a significantly higher survival rate than the high CBR1 expression (84.2% vs. 57.8%, p = 0.0167). Furthermore, HNSCC patients with low CBR1 expression showed a good prognosis for IR compared to patients with highly expressed CBR1. Also, we found that IR upregulated CBR1 mRNA via Nrf2 activation in HNSCC cells and patients. In vitro analysis, we found that CBR1-specific siRNA or inhibitor significantly enhanced radiosensitivity after IR, while CBR1 overexpression decreased. CBR1 inhibition by siRNA or inhibitor treatment accumulated cellular ROS leading to aberrant DNA damage repair and an increase of mitotic catastrophe. Moreover, the combination of CBR1 depletion with IR dramatically inhibited primary tumour growth in a xenograft tumor mouse model.ConclusionOur findings indicate that CBR1 has a key role in DNA damage response through regulation of IR-mediated ROS generation. Consistently, CBR1 expression is highly correlated with patient survival after and susceptibility to radiation therapy. Therefore, CBR1 inhibition with IR might be a potent therapeutic strategy for HNSCC treatment.

Highlights

  • Human carbonyl reductase 1 (CBR1) plays major roles in protecting cells against cellular damage resulting from oxidative stress

  • Head and neck squamous cell carcinoma (HNSCC) patients with low CBR1 expression show a good prognosis for radiation therapy To verify whether CBR1 is a prognostic factor for HNSCC patients, we analysed its expression in cohorts of the publicly available database

  • It was found that low-expression CBR1 groups had a better disease-free survival rate, this was not limited to patients receiving radiotherapy because of the limitations of the data

Read more

Summary

Introduction

Human carbonyl reductase 1 (CBR1) plays major roles in protecting cells against cellular damage resulting from oxidative stress. CBR1-mediated detoxification of oxidative materials increased by stressful conditions including hypoxia, neuronal degenerative disorders, and other circumstances generating reactive oxide is well documented, the role of CBR1 under ionising radiation (IR) is still unclear. Ionising radiation (IR), one of the main treatments for HNSCC, causes damage to DNA, lipids, and proteins due to the energy of the radiation and by reactive oxygen species (ROS), which is derived from intercellular water. Among these effects, ROS induced by IR is critical for the induction of cell death.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call