Abstract

Temperature is one of the key parameters for activity of cells. The trade-off between sensitivity and biocompatibility of cell temperature measurement is a challenge for temperature sensor development. Herein, a highly sensitive, biocompatible, and degradable temperature sensor was proposed to detect the living cell extracellular environments. Biocompatible silk materials were applied as sensing and packing layers, which endow the device with biocompatibility, biodegradability, and flexibility. The silk-based temperature sensor presented a sensitivity of 1.75%/°C and a working range of 35-63 °C with the capability to measure the extracellular environments. At the bending state, this sensor worked at promising response of cells at different temperatures. The applications of this developed silk material-based temperature sensor include biological electronic devices for cell manipulation, cell culture, and cellular metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.