Abstract

This research article presents and describes a novel design with improved performance low power consumption threshold voltage based CMOS thermal sensor for aerospace applications. The proposed temperature sensor utilizes the change in behavior of threshold voltage of MOSFET with variation in temperature. The challenge while designing the temperature sensor was to achieve the linearize output voltage with respect to change in temperature. Process corner analysis has been done to check the robustness of the circuit while performance analysis and sensitivity of the temperature sensor have been verified in the occurrence of parasitic. The proposed temperature sensor is featured with low power consumption, less power supply voltage utilization, high performance and sensitivity with inaccuracy as low as possible. The presented temperature sensor utilizes an active area of 18 µm × 9.85 µm with 117 nW power consumption. An improved linear performance with an inaccuracy of merely − 0.01 to + 0.47 °C over a wide temperature range of − 20 to + 120 °C is presented here. The sensitivity of proposed temperature sensor is found to be as high as 0.77 mV/°C. The proposed temperature sensor is realized and tested in Cadence virtuoso mixed signal design atmosphere using 0.18 µm CMOS technology and further investigated with support of tool from Mentor graphics. The engaged area of pad-limited chip is measured to be 0.96 mm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call