Abstract

Carbonized aramid fiber was prepared as a new type of adsorbent for in-tube solid-phase microextraction. The surface structure, chemical composition, and graphitization degree of the resulted fiber was determined and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrometry. The prepared fiber was packed in a stainless-steel tube instead of the sample loop of a six-port and tested for the extraction of five environmental estrogen hormones coupled with high-performance liquid chromatography. Several parameters affecting the estrogens’ extraction including the sampling volume, sampling rate, NaCl content, and desorption time were investigated in detail. The extraction tube with carbonized aramid fiber exhibited remarkable extraction performance towards five estrogen targets. The analysis method was established, and it exhibited a wide linear range (0.5–10.0 μg/L) with good linearity (correlation coefficient ≥0.9906), low limits of detection (0.011–0.13 μg/L), and high enrichment factors (178–1335) for the five analytes. Relative standard deviations (n = 3) for intraday (≤4.8%) and interday (≤4.0%) tests indicated that the extraction material had satisfactory repeatability. Bisphenol A released from a polycarbonate (PC) bottle was quantitatively detected with a concentration of 8.3 μg/L. The relative recoveries spiked at 5 and 10 μg/L were investigated, and the results were in the range of 74.3–121% for real water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.