Abstract

This study examines the effect of pitch concentration, rate of heating, soak temperature and time of soak upon the optical texture of cokes prepared from the co-carbonizations of a coal (Oxcroft-Clowne, NCB Rank 802) and three vitrains of NCB Rank 204, 801, 902 with Ashland A240 petroleum pitch. Using the coal (Rank 802) with 10 wt % and 25 wt % additions of pitch caused progressive penetration of the pitch into the coal with a resultant development of a mozaic anisotropy in the coke to replace partially the original coke isotropy. With 50 wt % addition of pitch almost all of the coal particles, 600 to 1100 μm in size, were modified during carbonization. Some pitch coke was formed. For the coal and three vitrains with increasing rates of co-carbonization from 0.5–10 K min −1 to 1200 K, using 25 wt % of A240 pitch, resultant cokes showed progressively increased extents of modification. For the two vitrains (Rank 801, 902) soaking at temperatures of 650–690 K caused a decrease in the extent of modification of isotropic coke when compared with the coke of HTT 1200 K. Evidently fast heating rates create the conditions of fluidity necessary for the pitch to modify the coal leading to growth of mesophase and anisotropic coke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call