Abstract
A series of phenolic acids and phenol natural products, such as p-hydroxybenzoic acid, p-coumaric acid, caffeic acid, ferulic acid, gallic acid, syringic acid, quercetin, and ellagic acid, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). All mammalian isozymes of human (h) or murine (m) origin hCA I–hCA XII, mCA XIII and hCA XIV were inhibited in the low micromolar or submicromolar range by these (poly)phenols ( K Is in the range of 0.87–7.79 μM). p-Hydroxybenzoic acid was the best inhibitor of all isozymes ( K Is of 0.87–35.4 μM) and the different isozymes showed very variable inhibition profiles with these derivatives. Phenols like the ones investigated here possess a CA inhibition mechanism distinct of that of the sulfonamides/sulfamates used clinically or the coumarins. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule and bind more externally within the active site cavity, making contacts with various amino acid residues. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds may lead to isoform-selective inhibitors targeting just one or few of the medicinally relevant CAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.