Abstract

Several diabetic complications are associated with forming advanced glycation end products (AGEs). Different chemical and natural compounds are able to prevent the development of these products. In this study, glycosylation was induced as a model by incubating bovine serum albumin (BSA) with glucose. Consequently, BSA was treated with glucose and different concentrations (1.25, 2.5, and 5 μM) of syringic acid, gallic acid, ellagic acid, ferulic acid, paracoumaric acid, and caffeic acid for 4 and 6 weeks. Biochemical experiments comprise measurements of fluorescent AGEs, protein carbonyl contents, total thiol, hemolysis tests, and also malondialdehyde (MDA) levels in RBC. These demonstrated the antiglycating mechanism of these phenolic acids. Most of the phenolic acids used in this study reduced MDA levels and protected thiol residues in protein structures. They also inhibited the formation of fluorescent AGEs and RBC lysis, except gallic acid. Moreover, ferulic acid, paracoumaric acid, and caffeic acid proteins significantly prevent carbonylation. Molecular docking and simulation studies showed that ellagic, caffeic, gallic, and syringic acids could interact with lysine and arginine residues in the active site of BSA and stabilize its structure to inhibit the formation of AGEs. Our results suggest that phenolic acid could be used as a potential phytochemical against protein glycation and related diabetic complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.