Abstract

Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing the pH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m−2 d−1 in mangroves and 57 ± 104 mmol m−2 d−1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.