Abstract
Microbially induced calcium carbonate precipitation (MICP) is a potential technology for creation of durable calcitic minerals. In the current study, we for the first time explored the potential of calcifying ureolytic fungi isolated from Moondyne cave of Western Australia for their biomineralization, metal and radionuclide remediation potential. Two ureolytic isolates Aspergillus sp. UF3 and Fusarium oxysporum UF8 showed significant production of calcite along with co-precipitation of heavy metal Lead and radionuclide Strontium as carbonates. Carbonic anhydrase production in synergism with urease is also reported. Micrographic results demonstrated association of fungal mycelium with biominerals. The biominerals precipitated by calcifying fungi were found to be calcite, vaterite, aragonite along with carbonates and hydroxides of Lead and Strontium. Effective biomineralization with calcium oxalate, a cheap calcium source is also reported. The results of current study suggest that ureolytic fungi from karstic environments bear immense potential for biomineralization, bioremediation and biorecovery of important metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.