Abstract

Naturally abundant transition metal oxides with high theoretical capacity have attracted more attention than commercial graphite for use as anodes in lithium-ion batteries. Lithium-ion battery electrodes that exhibit excellent electrochemical performance can be efficiently achieved via three-dimensional (3D) architectures decorated with conductive polymers and carbon. As such, we developed 3D carbon-supported amorphous vanadium oxide microspheres and crystalline V2O3 microspheres via a facile solvothermal method. Both samples were assembled with ultrathin nanosheets, which consisted of uniformly distributed vanadium oxides and carbon. The formation processes were clearly revealed through a series of time-dependent experiments. These microspheres have numerous active reaction sites, high electronic conductivity, and excellent structural stability, which are all far superior to those of other lithium-ion battery anodes. More importantly, 95% of the second-cycle discharge capacity was retained after the amorphous microspheres were subjected to 7,000 cycles at a high rate of 2,000 mA/g. The crystalline microspheres also exhibited a high-rate and long-life performance, as evidenced by a 98% retention of the second-cycle discharge capacity after 9,000 cycles at a rate of 2,000 mA/g. Therefore, this facile solvothermal method as well as unique carbon-supported and nanosheet-assembled microspheres have significant potential for the synthesis of and use in, respectively, lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call