Abstract

Coastal blue carbon ecosystems offer promising benefits for both climate change mitigation and adaptation. While there have been widespread efforts to transplant mangroves from the tropics to the subtropics and to introduce exotic saltmarsh plants like Spartina alterniflora in China, few studies have thoroughly quantified the chronological records of carbon sequestration with different organic carbon (OC) sources. To understand how variations in OC sources can affect the carbon sequestration potential of coastal wetland environment over time, we conducted a study on typical islands with two scenarios: S. alterniflora invasion and mangrove transplantation. Our study determined chronological records of carbon sequestration and storage from five sediment profiles and traced changes in the OC sources using carbon stable isotope (δ13C) and C:N ratios in response to these scenarios. The S. alterniflora invasion resulted in an 84 ± 19 % increase in the OC burial rate compared to unvegetated mudflats, while mangrove transplantation resulted in a 167 ± 74 % increase in the OC burial rate compared to unvegetated mudflats. S. alterniflora and mangroves showed greater carbon sequestration potential in areas with high supplies of suspended particulate matter, while mangroves needed to grow to a certain scale to display obvious carbon sequestration benefits. In the mangrove saltmarsh ecotone, mature mangrove habitats exhibited resistance to the S. alterniflora invasion, while mangrove transplantation in the environment invaded by S. alterniflora had a significant effect on OC contribution. Besides, plant-derived OC can be exported to the surrounding environment due to the rapid turnover of sediments. The blue carbon chronosequence-based estimation of OC sources and burial rates provides a useful reference for establishing carbon accounting policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.