Abstract

Hedges are ubiquitous green elements in many European cities. The selection of hedge types characterized by different traits can be suggested for urban greening projects to decrease pollution levels. At this end, carbon dioxide (CO2) sequestration and noise attenuation capability were analyzed in the following hedge types: Laurus nobilis, Nerium oleander, Pittosporum tobira and Pyracantha coccinea, largely used as green infrastructure in Rome (Italy). Representative hedges for each species were selected from high level traffic streets in the city centre (P sites). Traffic density (TD) was monitored simultaneously with CO2 concentration and noise level (N) in each of the considered P sites. The monthly CO2 sequestration capability (MSC) was calculated multiplying the total photosynthesis per hedge by the total photosynthetic activity time (in hours) per month. The multiple regression analysis predicted noise attenuation (ΔN) by a linear combination of total leaf area (TLA), total leaf density (TLD) and leaf mass area (LMA) of the considered hedge types. All the considered species, being evergreens, were active all year long, including winter, when CO2 emissions from road transport peaked. Nevertheless, among the considered hedge types, P. tobira and L. nobilis were the most efficient species in both MSC (31.6±2.8 and 25.4±2.4 kg CO2 month–1, respectively) and ΔN (15±1%, mean value). The results give insight on the use of hedges to mitigate pollution effects. Moreover, this method can be used to monitor hedge contribution to air quality, in relation to various elements in the city (i.e. traffic density, new cars produced, application of management projects, local laws). These results might be available for projects based on the use of vegetation in order to improve environmental quality in urban areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.