Abstract

The construction of a novel Z-scheme system which possesses superior charge separation and high redox ability is highly desirable for efficient photocatalytic degradation of organic pollutants. Herein, a carbon quantum dots (CQDs) modified g-C3N4 (GCN) and BiVO4 (BVO) composite (GCN-CQDs/BVO) was fabricated via an initial loading of CQDs on GCN, and a subsequent combination with BVO during its hydrothermal synthesis. Physical characterization (e.g. TEM, XRD, XPS) verified the intimate heterojunction structure of the composite, while CQDs improved its light absorption. The band structures of GCN and BVO were evaluated, displaying the feasibility for Z-scheme formation. In comparison with GCN, BVO, and GCN/BVO, GCN-CQDs/BVO generated the highest photocurrent and lowest charge transfer resistance, inferring the prominently improved charge separation. Under visible light irradiation, GCN-CQDs/BVO exhibited the significantly enhanced activity in degrading the typical Paraben pollutant——benzyl paraben (BzP), achieving the removal of 85.7% in 150 min. The effects of various parameters were explored, demonstrating that neutral pH was optimal, while coexisting ions (CO32−, SO42−, NO3−, K+, Ca2+, Mg2+) and humic acid impacted the degradation negatively. Meanwhile, trapping experiments and electron paramagnetic resonance (EPR) technique revealed that superoxide radicals (•O2−) and hydroxyl radical (•OH) were primarily responsible for BzP degradation by GCN-CQDs/BVO. In particular, with the assistance of CQDs, the generation of •O2− and •OH was notably augmented. Based on these results, a Z-scheme photocatalytic mechanism was proposed for GCN-CQDs/BVO, where CQDs acted as electron mediators to combine the holes from GCN and electrons from BVO, resulting in significantly improved charge separation and maximized redox ability. Moreover, the toxicity of BzP was remarkably reduced during the photocatalytic process, emphasizing its great potential in abating the risk of Paraben pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.