Abstract
With the increasing synthesis and application of carbon quantum dots (CQDs), their prevalence as pollution in water environments has increased. However, the toxic effects of CQDs on aquatic organisms are unclear, and their environmental safety must be evaluated. Herein, Daphnia magna was used as a model organism to explore the developmental toxicity of CQDs under a full life-cycle exposure. It was found that the feeding rate and offing number of D. magna decreased with increasing CQD concentration, and the body length of D. magna showed a trend of first increasing and then decreasing. These results indicated that long-term exposure to CQDs has evident toxic effects on D. magna development. Symbiosis analysis showed that the composition of the symbiotic microbial community of D. magna was disturbed by CQDs. The abundance of microorganisms involved in the immune response of D. magna such as Rhodobacter, decreased; those involved in the inflammation such as Gemmobacter, increased; and those involved in the nitrogen cycle, such as Hydrogenophaga and Paracoccus, decreased. When D. magna was subjected to environmental pressure, host-microflora interactive immune regulation was induced. The abundance of probiotics in D. magna, such as Rhodococcus, increased in response to environmental pressure. The results of KEGG function prediction showed that the abundance of symbiotic microorganisms involved in energy absorption and metabolism was affected by CQDs. In addition, the correlation analysis showed that there was a correlation between the changes in the symbiotic microbial community and the damage to D. magna after exposure to CQDs. Thus, it is appealed that as a potential environmental pollutant, CQDs have aquatic environmental risks, and their safe application deserves attention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have