Abstract
The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.