Abstract

ABSTRACTNanocomposites of modified carbon nanotubes (CNT) and either polyurethane (PU), poly(vinyl acetate) (PVAc), or silicone materials were synthetized and characterized for thermal mat application. The obtained results revealed that the polymer used as a matrix had an impact on the electrical resistance of the mats. The lowest results of 32 Ω of resistance was registered with silicone‐based mats containing 5 wt % of CNT. For the same CNT content the mats based on PVAc and PU displayed values of 55 and 60 Ω, respectively. The low resistance properties of silicone‐based materials were due principally to the good compatibility of both polymer and functionalized CNT. Because of the low resistance values, this mat was subjected to thermovision analysis revealing that the samples reached temperature of about 60 °C in 9 min and 70 °C after 27 min of 27 V of applied potential. The results showed an almost uniform temperature distribution in the samples’ surface with some high and low temperature spots, which were attributed to nonuniform distribution of CNT in the polymer matrix. In summary, all the obtained results confirm that silicone‐CNT are very promising materials that can be used as low‐voltage heating mats. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44194.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.