Abstract

In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call